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Let PM denote the metric projection on a proximinal subspace M of a real
normed linear space X. Let IIPMII = Sup {II yll: y E PM(x), Ilxll <I}. It is shown that
the Lipschitz constant for the radial retraction of the unit ball of X is equal to the
metric projection bound, which is defined to be MPB(X) = Sup{IIPMII : M
proximinal subspace of X}. A formula for MPB(l;), 1 < p < 00, is derived in the
end.

1. INTRODUCTION

Let X be a real normed linear space, and M a nontrivial closed proper
subspace of X. The (possibly empty) set of best approximations to x from M
is defined by

PM(x) = {y EM: Ilx - yll = d(x, M)},

where d(x, M) = inf{llx - yll : y EM}. The subspace M is called proximinal
if PM(X) contains at least one point for every x E X. The mapping
PM : X ~ 2x is called the metric projection onto M. If M is proximinal, the
norm of PM is defined by IIPMII = Sup{11 yll: yE PM(x), Ilxll <; I}. It is easily
seen that 1 <; IIPMII <; 2 for every proximinal subspace M of X. The metric
projection bound of X written as MPB(X) is defined to be MPB(X) =
Sup{iIPMII: M proximinal subspace of X}. If X is a Hilbert space then
MPB(X) = 1. In general 1 <; MPB(X) <; 2. Deutsch and Lambert [3] have
constructed a Chebyshev subspace in qQ, 1] whose metric projection is
linear and has norm two. Smith [5] has recently characterized uniformly
nonsquare Banach spaces as precisely those which have MPB(X) less than
two. Recall that a Banach space X is uniformly nonsquare if there is a
positive number 0 such that there do not exist elements x and y of the unit
ball for which II(x + y)/211 > 1 - 0 and II(x - y)/211 > 1 - 0. Earlier in [6]
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Thele had proved a similar characterization of uniformly nonsquare Banach
spaces as those spaces whose Lipschitz constant is less than two. Let us
recall that the Lipschitz constant k(X) of X is the infimum of all numbers k
for which II Tx - Tyll ~ k IIx - yll for all x, y E X. Here T is the radial
retraction on the unit ball, defined by

Tx=x, if Ilxll ~ I,

if Ilxll ~ 1.

It is also known [2] that k(X) = I if and only if the Birkhoff-James (B-J)
orthogonality (defined below) is symmetric. In [5] it is shown that
MPB(X) = I if and only if the B-J orthogonality is symmetric. In this paper
we show that, in fact, the metric projection bound and the Lipschitz constant
are equal for any normed space X. Thus it is not mere chance that the main
results of Thele [6] and Smith [5] about uniformly nonsquare spaces, and
about symmetry of orthogonality mentioned above look so similar. In the
end we obtain a formula for the Lipschitz constant of I; which leads us to
some interesting questions regarding certain inequalities involving lp norms.

The tool for proving our main result quickly is the B-J orthogonality. The
vector x is said to be orthogonal to y, written as x -l y, if Ilx + ayll ~ Ilxll for
all real numbers a. It is easily seen that x -l y if and only if there is an
f E S(X*), the unit ball of the conjugate space X*, such that f(x) = Ilxll and
f(y) = O. It is also known that for each pair of vectors x and y there exist
numbers a and P such that x +ay -l x and x -l x +Py. The orthogonality is
called symmetric if x -l y implies y -l x. It is well known that the
orthogonality is symmetric in a space of dimension greater than two only if
it is an inner product space. For details one can see James [4] and Day [I].

2. THE MAIN RESULT

THEOREM 1. For any normed space X, the metric projection bound
MPB(X) and the Lipschitz constant k(X) are equal.

To prove the theorem we first prove

LEMMA 1. We have MPB(X) = SuplllPyll: y E X}. (Here Py == Pry])'

Proof. Clearly SuplllPyll: y E X} ~ MPB(X) = m (say). Let e > 0;
choose M a proximinal subspace such that II PM II > m - e. Then there exist
x E X and y E PM(x) such that II yll > m - e. Also Ilx - yll ~ Ilx - zll for
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every z E M; therefore, IIx - yll ~ IIx - tyll for every t E R and hence
y E Py(x). Then IIPyli ~ II yll > m - e, which proves the lemma.

Proof of Theorem. Let x.l y. Then yEPy(x + y) and therefore
II YII/llx + YII ~ IIPyl1 ~ MPB(X). Thus Sup{il yll/llx + YII: x.l y} ~ MPB(X)
== m. On the other hand if e >0, choose y E X such that II PyII >m - e. Let z
be such that m - 6 ~ II b 11111 zll for some bE Piz); then bE ty for some t E R
and hence bE Pb(z), giving that z - b.l b. Thus

m - e~ Sup (I! yll/llx +YII),
xl.y

hence

m == Sup (II yllllix + yll)·
xl.y

Using the result of Thele [6, Theorem 1J that

k(X) =Sup !II yll/II ax - YII : y =1= 0, x .1 y, a E R}

=Sup{il YII/llx + yll : x.l y}

We get the result of the theorem.

3. METRIC PROJECTION BOUND FOR I;
It is easily seen that MPB(I;) = 2 if p == 1 or 00. If p =1= 1 or 00, then lp is

smooth. The normalized duality map J: lp ~ lq =I: is given by J(O) = 0 and
J(x) == L: Ixi1P

-
1sgn xt/llxllP

-
2 for 0 *x = (Xi)' If 0 *x and y == (Yi)' then

x.l y if and only if (J(x), y) == L: IXiIP-1 Yi sgn xtlllxllP-1 == O.
In what follows we will use the notation Ilxll, == (L: Ix;I,)I/, even when

O<r<l.

THEOREM 2. For 1 < p < 00,

Proof. By Theorem 1, MPB(X) = k(X) == SuPX 1. y(11 yll/llx + yll). It is
easily seen that

l/k(X)= Inf Ilax-yll= Inf lIax-yll
aER lIyll= I
xl.y xl.y

IIYII=I ax-yl.x
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This means that for I; we have to find the minimum value of Ilax - Yll p

under the constraints that

IYJIP +IY2IP=I, (1)

Yl IxiIP- l sgn Xl + Y21x21
P- l sgn X2= 0, (2)

Xl laxJ- YIIP-I sign(ax1 - YI) + x21ax2- Y2IP- l sgn(ax2- Y2) = O. (3)

We will assume that 0 < Xl < 1, 0 < X2 < I, Yl < 0, Y2 > 0, and a> O. The
other cases are similarly dealt with. Now,

Ilax - YII~ = II ax - YIIP-2(J(QX_YP ax - y)

= II ax - YIIP-2(J(QX_YP -y)

= - (Yllaxl - YIIP-J sgn(ax l - YI)

+Y21ax2- Y21P- 1 sgn(ax2- Y2))'

Putting the value of lax2- Y21P- 1 sgn(ax2- Y2) from (3) we get

II ax - yliP= «Y2 XI - YI X2)/X2) lax l - YlIP- 1 sgn(ax1 - Yl)

and

which yields

a = (Ylxl/(P-I) + Y2X~/(P-I))/(x~/(P-1) +x~/(P-I)).

We can rewrite condition (2) as -Yl X~-I = Y2X~-I, and combining this with
(I) we finally get

and

II ax - yll p = (Ix I IP + IX2n/(Ixll q + Ix2IQ)I/q(lxJIP(P-l) + Ix2IP(P-I))J/P

= IIxlI~/lIxIIQ IlxlI:::;~~)·

From this the result follows.

Remark I. Theorem 2 raises the following questions about norm
inequalities in lp spaces:

(i) Is k(l;) = SUPxEI'(lIxll:::;~~) IIxllillxlI~)?
p
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If the answer is yes, then we shall have

1 ~ Ilxll~u,~1) Ilxllq/llxll~ ~ 2.

(ii) Is 1~ Ilxll:;:;~~) Ilxllq/llxll~ ~ 2 for x E lp or l~?

The first inequality in (ii) follows from the convexity of the function
fer) = log Ilxll~ for 0 < r < 00.

Remark 2. We can see that k(l;) is the maximum value of
«1 + tP(P-I))I/P(l + tq

)l/
q)/l + tP on the interval 0 ~ t ~ 1.

For p = 3 and 4 we have been able to obtain the exact values of k(lD and
k(lD which are H17 + 7Vi) 1/3 and (1 + h(3)I/4, respectively.
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